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LETTER TO THE EDITOR 

Amplitude-exponent relation for the correlation length in the 
spherical model 

Malte Henkelt 
Fachbereich Physik, Universitat Essen, Postfach 103 764, D-4300 Essen 1 ,  Federal Republic 
of Germany 

Received 27 November 1987 

Abstract. For the critical spherical model in d = r +  1 dimensions, finite-size calculations 
of the spin-spin and energy-energy correlation lengths suggest relations among the critical 
exponents and the finite-size scaling amplitudes of the correlation lengths similar to those 
obtained in (1 + 1 )  dimensions from conformal invariance. For antiperiodic boundary 
conditions, the results agree with numerical studies in the (2 + 1)-dimensional Ising model. 

For two-dimensional systems defined on an infinitely long strip of finite width N and 
periodic boundary conditions, it has been shown that the hypothesis of conformal 
invariance at the critical point yields a relation between the finite-size scaling amplitude 
Ai of the inverse correlation length 5T'=AiN-'  and the bulk critical exponent xi 
(Cardy 1984, von Gehlen et al 1986) 

Ai = 2.rrxi. (1) 

One may ask whether a linear amplitude-exponent relation like (1) is possible for 
three-dimensional models. In a recent letter (Henkel 1987), studying the critical 
(2-t 1)-dimensional Ising model with a geometry infinite in one direction but finite in 
the other two directions with antiperiodic boundary conditions, numerical evidence 
was given for a linear relation Ai - xi, where xi is a bulk critical exponent. Here, we 
shall show that this linear relationship is also valid for the spherical model. 

Consider the ( d  = I + 1) -dimensional mean spherical model (for reviews see Joyce 
1972, Baxter 1982). In various geometries, the finite-size behaviour of the thermody- 
namic quantities has been studied for various boundary conditions (Barber and Fisher 
1973, BrCzin 1982, Luck 1985, Singh and Pathria 1985a, b, 1987). We shall use the 
Hamiltonian formulation (Henkel and Hoeger 1984) which allows a direct study of 
several correlation lengths, e.g. the spin-spin and energy-energy correlation lengths. 
Taking the Hamiltonian limit of the spherical model, we have a geometry which is 
infinite in one direction but finite in the other directions. 

The Hamiltonian in d = r + 1 dimensions (Henkel and Hoeger 1984) is 

H = - f A + f ( X h r x 2 - i h x M x )  (2) 

t Supported in part by the SFB 237 'Unordnung und grosse Fluktuationen' of the Deutsche Forschungs- 
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where A is the Laplacian, A = 2/ T 2  and T is the temperature, M is the interaction 
matrix and x is determined from the spherical constraint 

fi = (OlX2lO) (3)  

where I? is the number of sites in the r-dimensional quantum plane. 
Taking a hypercubic lattice with fi = N‘ and antiperiodic boundary conditions, 

the eigenvalues pk of the matrix M are for nearest-neighbour interactions ( k  is a 
collective symbol for the set of numbers { k J ;  j = 1, . . . , r}) (Barber and Fisher 1973) 

kJ=O,l  , . . . ,  N - I .  (4) 
j = l  

H can be diagonalised in terms of free bosonic oscillators a k :  

The inverse correlation lengths 5;’ are proportional to the energy differences Ei - E,. 
In particular, the lowest energy gap gives the correlation length of the spin-spin 
correlation function. 

We now take T = Tc and let N + 00. Then the leading term in 1/ N in the Hamiltonian 
is 

and we have also chosen the zero point of energy such that Eo=O. Define the 
‘thermogeometric parameter’ (see Pathria 1983) 

y = (I/J~)N[(x - 1)rI”’ (7) 
and we have 

where y is determined from the constraint equation. From (3) we have 

Using the identity (Singh and Pathria (1985b), equation (27)) 
N - l  m 

k = O  q=-m 
1 exp{u ~ 0 ~ [ ( 2 . r r / N ) ( k + i ) ] ) =  N 1 cos(.rrq)INq(u) (11) 

where I y ( u )  is a modified Bessel function, we arrive at 

where the prime means that terms with q = 0 are excluded. The first term in (12) is 
the bulk contribution. Close to the critical point T = T,,  one has x = 1 and the expansion 
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of the first term around x = 1 is known (Henkel and Hoeger 1984). For the second 
term, following Singh and Pathria (1985a, b), we use 

J duu”-’  ~X~(-.U-~/~)=~(P/(Y)””K~(~J((YP)) 
0 

where K , ( u )  is the other modified Bessel function. We obtain, to leading order in 1/ N, 

( 2 ~ ) ” ~ ( l / T - l / T ~ )  

(14) 

where q = (q: + . . . + &‘ I2 .  This constraint equation for the Hamiltonian limit is 
completely analogous to the result for the (mean) spherical model (Singh and Pathria 
(1985b), equation (35)). One can proceed and re-obtain the universality of the finite-size 
scaling functions in the Hamiltonian limit, in complete analogy with Singh and Pathria 
(1985a, b, 1987). 

From (14), y can be determined numerically. For example, in d = 3 ( r  = 2) one 
has for T = T,, y = 0.1 173 . . . 

We are interested in the correlation lengths. As mentioned above, the lowest energy 
of H (equation (8)) is proportional to the inverse spin-spin correlation length. The 
lowest energy is obtained by a single excitation with all kj = 0 (or -1). The amplitude 
A, of the spin-spin correlation length 6;’ = A,N-’ is 

The corresponding energy-energy correlation length is obtained from two excitations 
of this type, such that the total ‘momentum’ of this state, measured by k ,  + k 2 ,  vanishes. 
This definition of & is analogous to the definition used in the (2+ 1)-dimensional Ising 
model (see Henkel 1987). Thus 

A, = 2A,. (16) 

We want to compare this with the bulk critical exponents xu and x,, defined by 
(at T = T,) 

T A P )  - P-2”* F E ( P )  - F 2 ” e  (17) 
where the spin-spin correlation function r, and the energy-energy correlation function 
re are given by 

The matrix elements can be readily evaluated and yield, using translational invariance 
and the fact that (O1xllO)=O at T =  T,, 

r, = (Otx,xnIO)(OIx,x,+1IO) + ( O I X ~ X ~ ~ O ~ ( O I ~ ~ X ~ + ~ I O )  - ( O I X ~ X ~ I O > ~  

(19) 
2 = r,. 
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For example, for d = 3, one has, from x, = f( d - 2 + 7) and the fact that 7 = 0 in the 
spherical model, that x, = I, x, = 1. 

Comparing (16) and (19), we find that indeed 

4 I A u  = X F I X U .  (20) 

We note that the spherical model has the peculiarity that this relation is satisfied 
for antiperiodic as well as periodic boundary conditions, for dimensions 2 < d < 4. 
Since the spherical model Hamiltonian (8) is given by a set of free bosonic oscillators, 
one expects in fact a simple addition of the one-particle energies (see (16)) and also 
a factorisation of r, into r, (see (19)). In contrast, for the ( 2 +  1)-dimensional Ising 
model, equation (20) is not satisfied for periodic boundary conditions, but is satisfied 
for antiperiodic boundary conditions (Henkel 1987). 

We conclude that the calculation presented supports the conjecture that at the 
critical point the relation A i - x ,  also holds for three-dimensional models, in the 
geometry of one infinite and two finite directions and with antiperiodic boundary 
conditions. 
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